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We describe two interesting effects in wormhole physics. First, we find that a genuinely
charged matter source of gravity and electromagnetism may appear electrically neu-

tral to an external observer — a phenomenon opposite to the famous Misner–Wheeler
“charge without charge” effect. We show that this phenomenon takes place when cou-
pling a bulk gravity/nonlinear-gauge-field system self-consistently to a codimension-
one charged lightlike brane as a matter source. The “charge-hiding” effect occurs in a
self-consistent wormhole solution of the above coupled gravity/nonlinear-gauge-field/
lightlike-brane system which connects a noncompact “universe,” comprising the exterior
region of Schwarzschild–(anti-)de Sitter (or purely Schwarzschild) black hole beyond the
internal (Schwarzschild) horizon, to a Levi-Civita–Bertotti–Robinson-type (“tube-like”)
“universe” with two compactified dimensions via a wormhole “throat” occupied by
the charged lightlike brane. In this solution the whole electric flux produced by the
charged lightlike brane is expelled into the compactified Levi-Civita–Bertotti–Robinson-
type “universe” and, consequently, the brane is detected as neutral by an observer in
the Schwarzschild–(anti-)de Sitter “universe.” Next, the above “charge-hiding” solu-
tion can be further generalized to a truly charge-confining wormhole solution when we
couple the bulk gravity/nonlinear-gauge-field system self-consistently to two separate
codimension-one charged lightlike branes with equal in magnitude but opposite charges.
The latter system possesses a “two-throat” wormhole solution, where the “left-most” and
the “right-most” “universes” are two identical copies of the exterior region of the neu-
tral Schwarzschild–de Sitter black hole beyond the Schwarzschild horizon, whereas the
“middle” “universe” is of generalized Levi-Civita–Bertotti–Robinson “tube-like” form
with geometry dS2 × S2 (dS2 being the two-dimensional de Sitter space). It comprises
the finite-extent intermediate region of dS2 between its two horizons. Both “throats”
are occupied by the two oppositely charged lightlike branes and the whole electric flux
produced by the latter is confined entirely within the middle finite-extent “tube-like”
“universe.” A crucial ingredient is the special form of the nonlinear gauge field action,
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which contains both the standard Maxwell term as well as a square root of the latter.
This theory was previously shown to produce a QCD-like confining dynamics in flat

space–time.

Keywords: Generalized Levi-Civita–Bertotti–Robinson spaces; wormholes connecting
noncompact with compactified “universes”; dynamically generated cosmological con-
stant; wormholes via lightlike branes; QCD-like charge confinement.

PACS numbers: 11.25.-w, 04.70.-s, 04.50.+h

1. Introduction

In Ref. 1 ’t Hooft has proposed a consistent quantum description of linear con-

finement phenomena in terms of effective nonlinear gauge field actions, where the

nonlinear terms play the role of effective “infrared counterterms.” In particular,

he has argued that the energy density of electrostatic field configurations should

be a linear function of the electric displacement field in the infrared region (see

especially Eq. (5.10) in Ref. 1), which means that an additional term of the form

of square root of the standard Maxwell term should appear in the effective action.

The simplest way to realize this idea in Minkowski space–time is by considering the

following nonlinear effective gauge field model:2–7

S =

∫

d4xL(F 2) , L(F 2) = −1

4
F 2 − f

2

√
−F 2 ,

F 2 ≡ FµνF
µν , Fµν = ∂µAν − ∂νAµ ,

(1)

with f being a positive coupling constant.

Since the Lagrangian L(F 2) in (1) contains both the usual Maxwell term as

well as a nonanalytic function of F 2, it is thus a nonstandard form of nonlinear

electrodynamics. There are various reasons supporting the natural appearance of

the “square-root” Maxwell term in effective gauge field actions besides ’t Hooft’s

arguments in Ref. 1. Originally a purely “square-root” Lagrangian in flat space–time

− f
2

√
F 2 (in “magnetic”-dominated form) was proposed by Nielsen and Olesen8 to

describe string dynamics (see also Refs. 9–11). Furthermore, it has been shown in

Refs. 2–4 that the square root of the Maxwell term naturally arises (in flat space–

time) as a result of spontaneous breakdown of scale symmetry of the original scale-

invariant Maxwell theory with f appearing as an integration constant responsible

for the latter spontaneous breakdown.

As shown in Refs. 3–7 the flat space–time model (1), when coupled to charged

fermions, produces a confining effective potential V (r) = −α
r + βr (Coulomb plus

linear one) which is of the form of the well-known “Cornell” potential12–14 in quan-

tum chromodynamics (QCD). Also, for static field configurations the model (1)

yields the following electric displacement field D = E− f√
2

E

|E| . The pertinent energy

density turns out to be (there is no contribution from the square-root term in (1))
1
2E

2 = 1
2 |D|2 + f√

2
|D|+ 1

4f
2, so that it indeed contains a term linear w.r.t. |D| as

argued by ’t Hooft.1 Similar connection between D and E has been considered as an
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example of a “classical model of confinement” in Ref. 15 and analyzed generalizing

the methods developed for the “leading logarithm model” in Ref. 16.

The gauge-field system with a square root of the Maxwell term (1) coupled to

gravity (cf. Eq. (2) below) was recently studied in Ref. 17 (see the brief review in

the following Sec. 2), where the following interesting new features of the pertinent

static spherically symmetric solutions have been found:

(i) appearance of a constant vacuum radial electric field (in addition to the

Coulomb one) in charged black holes within Reissner–Nordström–de Sitter-

type and/or Reissner–Nordström–anti-de Sitter-type space–times, in parti-

cular, in electrically neutral black holes with Schwarzschild–de Sitter and/or

Schwarzschild–anti-de Sitter geometry;

(ii) novel mechanism of dynamical generation of cosmological constant through the

nonlinear gauge field dynamics due to the “square-root” Maxwell term;

(iii) appearance of a confining-type effective potential in charged test particle

dynamics in the above black hole backgrounds.

Further, it is interesting to study possible new effects which can take place in

the context of wormhole physics where the wormholes are generated due to the

presence of nonlinear gauge fields with confining type dynamics. To this end let us

recall that Misner–Wheeler “charge without charge” effect18 stands out as one of the

most interesting physical phenomena produced by wormholes. Misner and Wheeler

realized that wormholes connecting two asymptotically flat space–times provide the

possibility of existence of electromagnetically nontrivial solutions, where the lines

of force of the electric field flow from one universe to the other without a source

and giving the impression of being positively charged in one universe and negatively

charged in the other universe.

For a detailed exposition of the basics of wormhole physics we refer to Visser’s

book Ref. 19 (see also Refs. 20 and 21) and some more recent accounts.22–26

In a recent note27 we found the opposite effect in wormhole physics, namely,

that a genuinely charged matter source of gravity and electromagnetismmay appear

electrically neutral to an external observer. We showed this phenomenon to take

place in the coupled gravity/nonlinear-gauge-field system (2) (without bare cosmo-

logical constant) self-consistently interacting with a charged lightlike brane as a

matter source (cf. Eq. (43) below). In this case the lightlike brane, which connects

as a wormhole “throat” a noncompact “universe” with a compactified “universe,”

is electrically charged, however all of its flux flows into the compactified (“tube-

like”) “universe” only. No Coulomb field is produced in the noncompact “universe,”

therefore, the wormhole hides the charge from an external observer in the latter

“universe.” This charge-hiding effect is exclusively due to the presence of the

“square-root” Maxwell term in the nonlinear gauge field action.

A few remarks about the relevance of lightlike branes within the present con-

text are in order. In our previous papers28–36 we have provided an explicit repara-

metrization invariant worldvolume Lagrangian formulation of lightlike p-branes
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(“LL-branes” for short) (a brief review is given in Sec. 4) and we have used

them to construct various types of wormhole, regular black hole and lightlike

braneworld solutions in D = 4 or higher-dimensional asymptotically flat or asymp-

totically (anti-)de Sitter bulk space–times. In particular, in Refs. 35 and 36 we

have shown that LL-branes can trigger a series of spontaneous compactification-

decompactification transitions of space–time regions, e.g. from ordinary com-

pactified (“tube-like”) Levi-Civita–Bertotti–Robinson space37–39 to noncompact

Reissner–Nordström or Reissner–Nordström–de Sitter region or vice versa. Worm-

holes with “tube-like” structure and regular black holes with “tube-like” core have

been previously obtained within different contexts in Refs. 40–48.

Here an important remark about “Einstein–Rosen bridge” wormhole is in

order. The nomenclature of “Einstein–Rosen bridge” in several standard textbooks

uses the Kruskal–Szekeres manifold, where the “Einstein–Rosen bridge” geometry

becomes dynamical (see Ref. 49, p. 839, Fig. 31.6, and Ref. 50, p. 228, Fig. 5.15). The

latter notion of “Einstein–Rosen bridge” is not equivalent to the original Einstein–

Rosen’s construction,51 where the space–time manifold is static spherically sym-

metric consisting of two identical copies of the outer Schwarzschild space–time

region (r > 2m) glued together along the horizon at r = 2m. Namely, the two

regions in Kruskal–Szekeres space–time corresponding to the outer Schwarzschild

space–time region (r > 2m) and labeled (I) and (III) in Ref. 49 are generally discon-

nected and share only a two-sphere (the angular part) as a common border (U = 0,

V = 0 in Kruskal–Szekeres coordinates), whereas in the original Einstein–Rosen

“bridge” construction51 the boundary between the two identical copies of the outer

Schwarzschild space–time region (r > 2m) is a three-dimensional (lightlike) hyper-

surface (r = 2m). In Refs. 31 and 34 it has been shown that the “Einstein–Rosen

bridge” in its original formulation51 naturally arises as the simplest particular case

of static spherically symmetric wormhole solutions produced by lightlike branes

as gravitational sources, where the two identical “universes” with Schwarzschild

outer-region geometry are glued together by a lightlike brane occupying their com-

mon horizon — the wormhole “throat.” An understanding of this picture within

the framework of Kruskal–Szekeres manifold was subsequently provided in Ref. 52,

which involves Rindler’s elliptic identification of the two antipodal future event

horizons.

Let us recall that LL-branes by themselves play an important role in modern

general relativity. They are singular null (lightlike) hypersurfaces in Riemannian

space–time which provide dynamical description of various physically important

phenomena in cosmology and astrophysics such as: (i) impulsive lightlike signals

arising in cataclysmic astrophysical events;53 (ii) the “membrane paradigm”54

of black hole physics; (iii) the thin-wall approach to domain walls coupled to

gravity.55–58 More recently, LL-branes became significant also in the context of

modern nonperturbative string theory, in particular, as the so-called H-branes de-

scribing quantum horizons (black hole and cosmological),59 as Penrose limits of

baryonic D-branes,60 etc. (see also Refs. 61 and 62).
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In the pioneering papers55–58 LL-branes in the context of gravity and cosmology

have been extensively studied from a phenomenological point of view, i.e. by intro-

ducing them without specifying the Lagrangian dynamics from which they may

originate.a On the other hand, we have proposed in a series of recent papers28–36

a new class of concise reparametrization invariant worldvolume Lagrangian actions

(see also Sec. 4 below), providing a derivation from first principles of the LL-brane

dynamics. The latter feature — the explicit worldvolume Lagrangian description of

LL-branes is the principal distinction of our wormhole construction via (charged)

LL-branes as sources of gravity and electromagnetism w.r.t. other non-Lagrangian

“thin-shell” constructions of wormhole solutions (for the basics of the “thin-shell”

cut-and-paste technique we refer to the book Ref. 19).

There are several characteristic features of LL-branes which drastically distin-

guish them from ordinary Nambu–Goto branes:

(i) They describe intrinsically lightlike modes, whereas Nambu–Goto branes de-

scribe massive ones.

(ii) The tension of the LL-brane arises as an additional dynamical degree of free-

dom, whereas Nambu–Goto brane tension is a given ad hoc constant. The

latter characteristic feature significantly distinguishes our LL-brane models

from the previously proposed tensionless p-branes (for a review of the latter,

see Ref. 64) which rather resemble a p-dimensional continuous distribution of

massless point-particles.

(iii) Consistency of LL-brane dynamics in a spherically or axially symmetric gravi-

tational background of codimension one requires the presence of a horizon

which is automatically occupied by the LL-brane (“horizon straddling” accord-

ing to the terminology of Ref. 56).

(iv) When the LL-brane moves as a test brane in spherically or axially symmetric

gravitational backgrounds its dynamical tension exhibits exponential “infla-

tion/deflation” time behavior65 — an effect similar to the “mass inflation”

effect around black hole horizons.66,67

The principal object of study in the present paper is the self-consistently coupled

gravity/nonlinear-gauge-field system, containing the square root of the Maxwell

term, with one or more LL-brane(s). We significantly extend the results of our

previous note27 by constructing both more general wormhole solutions displaying

a “charge-hiding” effect as well as completely new “two-throat” wormhole solution

with genuinely QCD-like confining behavior.

The plan of the present paper is as follows. In Sec. 2 we briefly review the Lagran-

gian formulation and the corresponding static spherically symmetric solutions of

the coupled gravity/nonlinear-gauge-field system (2),17 including the generation

aIn a more recent paper63 brane actions in terms of their pertinent extrinsic geometry have been
proposed which generically describe non-lightlike branes, whereas the lightlike branes are treated
as a limiting case.
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of vacuum constant-magnitude electric field as well as dynamical generation of

cosmological constant.

In Sec. 3 we extend the results of Ref. 27 obtaining new solutions of com-

pactified Levi-Civita–Bertotti–Robinson-type in the gravity/nonlinear-gauge-field

system (2) depending on the magnitude of the bare cosmological constant versus

the dynamically generated one.

In Sec. 4 we briefly review the worldvolume Lagrangian formulation and the

basic properties of LL-brane dynamics, particularly stressing on the “horizon strad-

dling” property (cf. Eqs. (42) below).

In Sec. 5 we describe the Lagrangian formulation of the self-consistently coupled

bulk gravity/nonlinear-gauge-field system (2) to one or more LL-brane sources (cf.

Eq. (43)) and outline a general procedure to derive wormhole solutions.

In Sec. 6 we construct “one-throat” wormhole solutions to the coupled gravity/

nonlinear-gauge-field/LL-brane system (43) with the charged LL-brane occupy-

ing the wormhole “throat,” which connects a noncompact “universe” with

Schwarzschild–(anti)-de Sitter geometry (where the cosmological constant is par-

tially or entirely dynamically generated) to a compactified (“tube-like”) “universe”

of Levi-Civita–Bertotti–Robinson-type. These wormholes exhibit the novel property

of hiding electric charge from external observer in the noncompact “universe,” i.e.

the whole electric flux produced by the charged LL-brane at the wormhole “throat”

is expelled into the “tube-like” “universe.”

In Sec. 7 we construct more general “two-throat” wormhole solution to the cou-

pled gravity/nonlinear-gauge-field/LL-brane system (43) with two separate charged

LL-branes with equal in magnitude but opposite charges occupying the wormhole

“throats” and connecting pairwise three different “universes.” The “left-most” and

the “right-most” “universes” are two identical copies of the exterior region of the

electrically neutral Schwarzschild–de Sitter black hole beyond the Schwarzschild

horizon. The “middle” “universe” is of Levi-Civita–Bertotti–Robinson “tube-like”

form with geometry dS2 × S2 (dS2 being the two-dimensional de Sitter space). It

comprises the finite-extent intermediate region of dS2 between its two horizons.

Both oppositely charged LL-branes occupying the two “throats” are producing an

electric flux which turns out to be confined entirely within the middle finite-extent

“tube-like” “universe,” i.e. no flux from the charged LL-branes is flowing into the

noncompact outer “universes.”

2. Gravity/Nonlinear-Gauge-Field System.

Spherically Symmetric Solutions

We will consider the simplest coupling to gravity of the nonlinear gauge field system

with a square root of the Maxwell term (1) known to produce QCD-like confinement

in flat space–time.3–7 The relevant action is given by (we use units with Newton

constant GN = 1):

S =

∫

d4x
√
−G

[

R(G)− 2Λ

16π
+ L(F 2)

]

,
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L(F 2) = −1

4
F 2 − f

2

√
εF 2 ,

F 2 ≡ FκλFµνG
κµGλν , Fµν = ∂µAν − ∂νAµ . (2)

Here R(G) is the scalar curvature of the space–time metric Gµν and G ≡ det ‖Gµν‖;
the sign factor ε = ±1 in the square-root term in (2) corresponds to “magnetic” or

“electric” dominance; f is a positive coupling constant.

It is important to stress that we do not need to introduce any bare cosmological

constant Λ in (2) since the “square-root” Maxwell term dynamically generates a

nonzero effective cosmological constant Λeff = 2πf2.27 The role of the bare Λ is just

shifting the effective Λeff (see Eqs. (9) below).

Remark. One could start with the non-Abelian version of the gauge field action

in (2). Since we will be interested in static spherically symmetric solutions, the

non-Abelian gauge theory effectively reduces to an Abelian one as pointed out in

Ref. 3.

The corresponding equations of motion read:

Rµν − 1

2
GµνR+ ΛGµν = 8πT

(F )
µν , (3)

T
(F )
µν =

(

1 + ε
f√
εF 2

)

FµκFνλG
κλ − 1

4

(

F 2 + 2f
√
εF 2

)

Gµν , (4)

and

∂ν

(√
−G

(

1 + ε
f√
εF 2

)

FκλG
µκGνλ

)

= 0 . (5)

Here we will first consider the case of “electric dominance,” i.e. ε = −1 in (2). In

our preceding paper17 we have shown that the gravity–gauge-field system (2) with

zero bare cosmological constant possesses static spherically symmetric solutions

with a radial electric field containing both Coulomb and constant “vacuum” pieces:

F0r =
εF f√

2
+

Q√
4π r2

, εF ≡ sign(F0r) = sign(Q) , (6)

and the space–time metric:

ds2 = −A(r)dt2 +
dr2

A(r)
+ r2(dθ2 + sin2 θ dϕ2) , (7)

A(r) = 1−
√
8π|Q|f − 2m

r
+

Q2

r2
− 2πf2

3
r2 , (8)

is Reissner–Nordström–de Sitter-type with dynamically generated effective cosmo-

logical constant 2πf2. In the presence of the bare cosmological constant term in (2)

the only effect is shifting of the effective cosmological constant, namely:

A(r) = 1−
√
8π|Q|f − 2m

r
+

Q2

r2
− Λeff

3
r2 , Λeff = 2πf2 + Λ . (9)
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The expression for Λeff (9) tells us that:

• Solution (6)–(7) with (9) is Reissner–Nordström–de Sitter-type with additional

constant vacuum radial electric field even for negative bare cosmological constant

Λ < 0 provided |Λ| < 2πf2, i.e. Λeff > 0 in (9);

• Solution (6)–(7) with (9) becomes Reissner–Nordström-type with additional con-

stant vacuum radial electric field in spite of the presence of negative bare cosmo-

logical constant Λ < 0 with |Λ| = 2πf2, i.e. Λeff = 0 in (9);

• Solution (6)–(7) with (9) is Reissner–Nordström–anti-de Sitter-type with con-

stant vacuum radial electric field for sufficiently large negative bare cosmological

constant Λ < 0 with |Λ| > 2πf2, i.e. Λeff < 0 in (9).

Notice that the “leading” constant term in the Reissner–Nordström–(anti-)

de Sitter-type metric coefficient (9) is different from 1 when Q 6= 0. This effect

resembles the effect on gravity produced by a spherically symmetric “hedgehog”

configuration of a nonlinear sigma-model scalar field with SO(3) symmetry (see

Refs. 68 and 69).

The electrically neutral case Q = 0 will play an important role in what follows:

A(r) = 1− 2m

r
− Λeff

3
r2 , Λeff = 2πf2 + Λ , F0r =

εF f√
2
. (10)

• Solution (10) is Schwarzschild–de Sitter black hole carrying a constant vacuum

radial electric field for all Λ > −2πf2, even for negative Λ provided |Λ| < 2πf2,

i.e. Λeff > 0 in (10).

• Solution (10) for negative Λ with |Λ| = 2πf2 becomes asymptotically flat ordinary

Schwarzschild carrying a constant vacuum radial electric field in spite of the

presence of negative bare cosmological constant, i.e. Λeff = 0 in (10).

• Solution (10) is Schwarzschild–anti-de Sitter carrying a constant vacuum radial

electric field for all Λ < 0 with |Λ| > 2πf2, i.e. Λeff < 0 in (10).

3. Generalized Levi-Civita Bertotti Robinson Space Times

Here we will look for static solutions of Levi-Civita–Bertotti–Robinson-type37–39 of

the system (3)–(5), namely, with space–time geometry of the form M2×S2, where

M2 is some two-dimensional manifold:

ds2 = −A(η)dt2 +
dη2

A(η)
+ r20(dθ

2 + sin2 θ dϕ2) ,

−∞ < η < ∞ , r0 = const ,

(11)

and being:

• either purely electric type, where the sign factor ε = −1 in the gauge field Lagran-

gian L(F 2) (2):

Fµν = 0 for µ, ν 6= 0, η , F0η = F0η(η) ; (12)
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• or purely magnetic type, where ε = +1 in (2):

Fµν = 0 for µ, ν 6= i, j ≡ θ, ϕ , ∂0Fij = ∂ϕFij = 0 . (13)

In the purely electric case (12) the gauge field equations of motion become:

∂η

(

F0η −
εF f√

2

)

= 0 , εF ≡ sign(F0η) , (14)

yielding a globally constant vacuum electric field:

F0η = cF = arbitrary const . (15)

The (mixed) components of energy–momentum tensor (4) read:

T (F )0

0 = T (F )η

η = −1

2
F 2
0η , T

(F )
ij = gij

(

1

2
F 2
0η −

f√
2
|F0η|

)

. (16)

Taking into account (16), the Einstein equations (3) for (ij), where Rij = 1
r20
gij

because of the S2 factor in (11), yield:

1

r20
= 4πc2F + Λ . (17)

The (00) Einstein equation (3) using the expression R0
0 = − 1

2∂
2
ηA (valid for metrics

of the type (11), cf. Refs. 70 and 71) becomes:

∂2
ηA = 8πh(|cF |) , h(|cF |) ≡ c2F −

√
2f |cF | −

Λ

4π
. (18)

Thus, we arrive at the following three distinct types of Levi-Civita–Bertotti–

Robinson solutions for gravity coupled to the nonlinear gauge field system (2):

(i) AdS2×S2 with constant vacuum electric field |F0η| = |cF |, where AdS2 is two-

dimensional anti-de Sitter space with (using the definition of h(|cF |) in (18)):

A(η) = 4πh(|cF |)η2 , h(|cF |) > 0 (19)

in the metric (11), η being the Poincaré patch spacelike coordinate, provided:

|cF | >
f√
2

(

1 +

√

1 +
Λ

2πf2

)

for Λ ≥ −2πf2 , (20)

|cF | >
√

1

4π
|Λ| for Λ < 0 , |Λ| > 2πf2 . (21)

(ii) Rind2 ×S2 with constant vacuum electric field |F0η| = |cF |, where Rind2 is the

flat two-dimensional Rindler space with:

A(η) = η for 0 < η < ∞ or A(η) = −η for −∞ < η < 0 (22)

in the metric (11), provided:

|cF | =
f√
2

(

1 +

√

1 +
Λ

2πf2

)

for Λ ≥ −2πf2 . (23)
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(iii) dS2 × S2 with weak constant vacuum electric field |F0η| = |cF |, where dS2 is

two-dimensional de Sitter space with:

A(η) = 1−K(|cF |)η2 ,

K(|cF |) ≡ −4πh(|cF |) ≡ 4π

(√
2f |cF | − c2F +

Λ

4π

)

> 0
(24)

in the metric (11), provided:

|cF | <
f√
2

(

1 +

√

1 +
Λ

2πf2

)

for Λ > −2πf2 . (25)

When Λ = 0, for the special value |cF | = f√
2
we recover the Nariai solution72,73

with A(η) = 1−2πf2η2 and equality (up to signs) among energy density, radial and

transverse pressures: ρ = −pr = −p⊥ = f2

4 (using standard definitions T (F )µ

ν =

diag(−ρ, pr, p⊥, p⊥)).
In all three cases above the size of the S2 factor is given by (17). Solutions

(22) and (24) with Λ = 0 are specifically due to the presence of the non-Maxwell

square-root term (with ε = −1) in the gauge field Lagrangian (2).

In the purely magnetic case (13) the gauge field equations of motion (5):

∂ν

[

sin θ

(

1 +
f√
F 2

)

Fµν

]

= 0 (26)

yield magnetic monopole solution:

Fij = Br20 sin θ εij , B = const , (27)

irrespective of the presence of the “square-root” Maxwell term. The latter, however,

does contribute to the energy–momentum tensor:

T (F )0

0 = T (F )η

η = −1

2
B2 − f |B| , T

(F )
ij =

1

2
gijB

2 . (28)

Taking into account (28), the Einstein equations (3) for (ij) yield (cf. (17)):

1

r20
= 4π

(

B2 +
√
2f |B|

)

+ Λ , (29)

which determines the size of the S2 factor, whereas the mixed-component (00)

Einstein equation (3) gives:

∂2
ηA = 8πB2 − 2Λ . (30)

Thus, in the purely magnetic case we recover the three types of Levi-Civita–

Bertotti–Robinson solutions with constant-magnitude magnetic field:

(a) AdS2×S2 space–time with magnetic monopole (27) for Λ < 4πB2 with A(η) =

4π
(

B2 − Λ
4π

)

η2 in the metric (11);
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(b) Rind2 ×S2 space–time with magnetic monopole (27) for Λ = 4πB2 with A(η) =

η, η > 0 in the metric (11);

(c) dS2 × S2 space–time with magnetic monopole (27) for Λ > 4πB2 with A(η) =

1− 4π
(

Λ
4π −B2

)

η2 in the metric (11).

Here the only feature is the dependence of the size of the S2-factor on the “square-

root” Maxwell coupling constant f (29).

Generalized Levi-Civita–Bertotti–Robinson solutions of the above type have

already appeared in different contexts in Refs. 44–48 and 74 (extension to higher

space–time dimensions). The main distinction in the present case is that the Levi-

Civita–Bertotti–Robinson solutions are now generated due to the presence of the

“square-root” Maxwell term in (2) which also produces a nonzero effective cosmo-

logical constant.

In Ref. 75 a different kind on nonlinear gauge field Lagrangian L(F 2) coupled to

gravity has been considered which generates locally (in the vicinity of the center of

the geometry) an effective cosmological constant. However, the latter L(F 2) is an

analytic function of F 2 reducing to the ordinary Maxwell term for small F 2 unlike

the present nonlinear Lagrangian L(F 2) in (2) containing the square-root term√
−F 2. This latter feature of (2) produces a globally defined dynamically generated

cosmological constant 2πf2.

4. Lagrangian Formulation of Lightlike Branes. Horizon “Straddling”

In what follows we will consider gravity/gauge-field system self-consistently inter-

acting with a lightlike p-brane (“LL-brane” for short) of codimension one (D =

(p + 1) + 1); in the present section will keep arbitrary the number of space–

time dimensions). In a series of previous papers28–36 we have proposed manifestly

reparametrization invariant worldvolume Lagrangian formulation in several dynam-

ically equivalent forms of LL-branes coupled to bulk gravity Gµν and bulk gauge

fields, in particular, electromagnetic field Aµ. Here we will use our Polyakov-type

formulation given by the worldvolume action:35,36

SLL[q] = −1

2

∫

dp+1σ Tb
p−1
2

0

√−γ
[

γabḡab − b0(p− 1)
]

, (31)

ḡab ≡ ∂aX
µGµν∂bX

ν − 1

T 2
(∂au+ qAa)(∂bu+ qAb) , Aa ≡ ∂aX

µAµ . (32)

Here and below the following notations are used:

• γab is the intrinsic Riemannian metric on the worldvolume with γ = det ‖γab‖;
gab is the induced metric on the worldvolume:

gab ≡ ∂aX
µGµν(X)∂bX

ν , (33)

which becomes singular on-shell (manifestation of the lightlike nature, cf. Eq. (37)

below); b0 is a positive constant measuring the worldvolume “cosmological

constant.”
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• Xµ(σ) are the p-brane embedding coordinates in the bulk D-dimensional space–

time with Riemannian metric Gµν(x) (µ, ν = 0, 1, . . . , D − 1); (σ) ≡ (σ0 ≡ τ, σi)

with i = 1, . . . , p; ∂a ≡ ∂
∂σa .

• u is auxiliary worldvolume scalar field defining the lightlike direction of the

induced metric (see Eq. (37) below) and it is a nonpropagating degree of

freedom.36

• T is dynamical (variable) brane tension (also a nonpropagating degree of

freedom).

• Coupling parameter q is the surface charge density of the LL-brane.

The corresponding equations of motion w.r.t. Xµ, u, γab and T read accordingly

(using short-hand notation (32)):

∂a(T
√

|ḡ|ḡab∂bXµ) + T
√

|ḡ|ḡab∂aXλ∂bX
νΓµ

λν

+
q

T

√

|ḡ|ḡab∂aXν(∂bu+ qAb)FλνG
µλ = 0 , (34)

∂a

(

1

T

√

|ḡ|ḡab(∂bu+ qAb)

)

= 0 , γab =
1

b0
ḡab , (35)

T 2 + ḡab(∂au+ qAa)(∂bu+ qAb) = 0 . (36)

Here ḡ = det ‖ḡab‖ and Γµ
λν denotes the Christoffel connection for the bulk

metric Gµν .

The on-shell singularity of the induced metric gab (33), i.e. the lightlike property,

directly follows from Eq. (36) and the definition of ḡab (32):

gab
(

ḡbc(∂cu+ qAc)
)

= 0 . (37)

Explicit worldvolume reparametrization invariance of the LL-brane action (31)

allows to introduce the standard synchronous gauge-fixing conditions for the intrin-

sic worldvolume metric γ00 = −1, γ0i = 0 (i = 1, . . . , p), which reduces Eqs. (35)

and (36) to the following relations:

(∂0u+ qA0)
2

T 2
= b0 + g00 , ∂iu+ qAi = (∂0u+ qA0)g0i(b0 + g00)

−1 ,

g00 = gijg0ig0j , ∂0
(

√

g(p)
)

+ ∂i
(

√

g(p)gijg0j
)

= 0 , g(p) ≡ det ‖gij‖ ,
(38)

(recall that g00, g0i, gij are the components of the induced metric (33); gij is the

inverse matrix of gij).

In our previous papers28–36 we have studied in some detail the consistency of LL-

brane dynamics in static “spherically-symmetric”-type backgrounds, whose generic

form reads (in what follows we will use Eddington–Finkelstein coordinates76,77

where dt = dv − dη
A(η) , F0η = Fvη):

ds2 = −A(η)dv2 + 2 dv dη + C(η)hij(θ)dθ
i dθ j Fvη = Fvη(η) , (39)
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all remaining components of Fµν being zero. For the LL-brane we use the standard

embedding ansatz:

X0 ≡ v = τ , X1 ≡ η = η(τ) , X i ≡ θi = σi (i = 1, . . . , p) . (40)

For the class of backgrounds (39) with the embedding (40) (where the induced

metric components g0i = 0) Eqs. (38) reduce to:

g00 = 0 , ∂0C(η(τ)) ≡ η̇∂ηC|η=η(τ) = 0 ,
(∂0u+ qA0)

2

T 2
= b0 , ∂iu = 0 (41)

(η̇ ≡ ∂0η ≡ ∂τη(τ)). Thus, in the generic case of nontrivial dependence of C(η) on

the “radial-like” coordinate η, the first two relations in (41) yield:

η̇ =
1

2
A(η(τ)) , η̇ = 0 → η(τ) = η0 = const , A(η0) = 0 . (42)

In other words, consistency of LL-brane dynamics requires the corresponding back-

ground (39) to possess a horizon at some η = η0, which is automatically occupied

by the LL-brane.

The latter property is called “horizon straddling” according to the terminology

of Ref. 56. Similar “horizon straddling” has been found also for LL-branes moving

in rotating axially symmetric (Kerr or Kerr–Newman) and rotating cylindrically

symmetric black hole backgrounds.33,34

5. Bulk Gravity/Nonlinear-Gauge-Field System Coupled to

Lightlike Brane Sources

We consider now bulk Einstein/nonlinear gauge field system (2) self-consistently

coupled to N ≥ 1 distantly separated charged codimension-one lightlike branes (in

the present case D = 4, p = 2). The pertinent Lagrangian action reads:

S =

∫

d4x
√
−G

[

R(G)− 2Λ

16π
+ L(F 2)

]

+

N
∑

k=1

SLL

[

q(k)
]

,

L(F 2) = −1

4
F 2 − f

2

√
−F 2 ,

(43)

where SLL[q
(k)] indicates the worldvolume action of the kth LL-brane of the form

(31). Henceforth we will consider the case of “electric dominance” for the “square-

root” Maxwell term.

The corresponding equations of motion are as follows:

Rµν − 1

2
GµνR+ ΛGµν = 8π

[

T
(F )
µν +

N
∑

k=1

T (brane-k)
µν

]

, (44)

∂ν

[

√
−G

(

1− f√
−F 2

)

FκλG
µκGνλ

]

+

N
∑

k=1

j
µ
(brane-k) = 0 . (45)
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Here T
(F )
µν is the same as in (4), whereas the energy–momentum tensor and the

charge current density of kth LL-brane are straightforwardly derived from the per-

tinent LL-brane action (31):

T
µν
(brane-k) = −

∫

d3σ
δ(4)(x−X(k)(σ))√

−G
T (k)

×
√

|ḡ(k)|ḡab(k)∂aX
µ
(k)∂bX

ν
(k) , (46)

j
µ
(brane-k) = −q(k)

∫

d3σ δ(4)(x−X(k)(σ))

×
√

|ḡ(k)|ḡab(k)∂aXµ
(k)

∂bu
(k) + q(k)A(k)

b

T (k)
, (47)

where for each kth LL-brane:

ḡ
(k)
ab ≡ g

(k)
ab − 1

T 2
(k)

(

∂au
(k) + q(k)A(k)

a

)(

∂bu
(k) + q(k)A(k)

b

)

,

g
(k)
ab = ∂aX

µ
(k)Gµν∂bX

ν
(k) , A(k)

a ≡ ∂aX
µ
(k)Aµ .

(48)

The LL-brane equations of motion have already been written down in (34)–(36)

above.

Constructing wormhole solutions of static “spherically-symmetric”-type (39) for

the coupled gravity-gauge-field-LL-brane system (43) proceeds through the follow-

ing steps:

(i) Choose “vacuum” static “spherically-symmetric”-type solutions (39) of

(44)–(45), i.e. without the delta-function terms due to the LL-branes, in

each space–time region (separate “universe”) given by
(

−∞ < η < η
(1)
0

)

,
(

η
(1)
0 < η < η

(2)
0

)

, . . .,
(

η
(N)
0 < η < ∞

)

with common horizon(s) at η = η
(k)
0

(k = 1, . . . , N).

(ii) Each kth LL-brane automatically locates itself on the horizon at η = η
(k)
0

according to “horizon straddling” property (42) of LL-brane dynamics. It thus

will play the role of a wormhole “throat” between two neighboring “universes.”

(iii) Match the discontinuities of the derivatives of the metric and the gauge field

strength (39) across each horizon at η = η
(k)
0 using the explicit expressions for

the LL-brane stress–energy tensor and charge current density (46)–(47).

Taking into account (39)–(42), we obtain from (46) the following expression

for the energy–momentum tensor of each kth LL-brane (here we suppress the

index (k)):

T
µν
(brane) = Sµνδ(η − η0) (49)
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with surface energy–momentum tensor:

Sµν ≡ T

b
1/2
0

(∂τX
µ∂τX

ν − b0G
ij∂iX

µ∂jX
ν)v=τ,η=η0,θi=σi , (50)

where Gij = C(η)hij(θ) (cf. (39), here i, j = θ, ϕ). For the nonzero components of

(50) (with lower indices) and its trace we find:

Sηη =
T

b
1/2
0

Sij = −Tb
1/2
0 Gij , Sλ

λ = −2Tb
1/2
0 . (51)

For the LL-brane charge current densities we get accordingly:

j
µ
(brane-k) = δ

µ
0 q

(k)
√

det ‖Gij‖δ(η − η
(k)
0 ) . (52)

With the help of (49)–(52) and using again (39)–(42) the matching relations for

the discontinuities at each horizon η = η
(k)
0 become (cf. Refs. 35 and 36):

(A) Matching relations from Einstein equations (44):

[∂ηA]η(k)
0

= −16πT (k)

√

b
(k)
0 , [∂η lnC]

η
(k)
0

= − 8π
√

b
(k)
0

T (k) (53)

using notation
[

Y
]

η0
≡ Y |η→η0+0 − Y |η→η0−0 for any quantity Y .

(B) Matching relations from nonlinear gauge field equations (45):

[Fvη]η(k)
0

= q(k) . (54)

(C) The only nontrivial contribution of second-order LL-brane equations of motion

(34) in the case of LL-brane coordinate embedding (40) comes from the X0-

equation of motion which yields:

∂0T
(k) +

T (k)

2

(

〈∂ηA〉η(k)
0

+ 2b
(k)
0 〈∂η lnC〉

η
(k)
0

)

−
√

b
(k)
0 q〈Fvη〉η(k)

0
= 0 (55)

with notation 〈Y 〉η0 ≡ 1
2

(

Y |η→η0+0 + Y |η→η0−0

)

. In what follows we will

take time-independent dynamical LL-brane tension(s) (∂0T
(k) = 0) because

of matching static bulk space–time geometries. Let us also note that the

appearance of mean values of the corresponding quantities with discontinuities

across the horizons follows the resolution of the discontinuity problem given in

Ref. 55 (see also Ref. 78).

The wormhole solutions presented in the next section share the following im-

portant properties:

(a) The LL-branes at the wormhole “throats” represent “exotic” matter with T ≤
0, i.e. negative or zero brane tension implying violation of null-energy conditions

as predicted by general wormhole arguments19 (although the latter could be

remedied via quantum fluctuations).
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(b) The wormhole space–times constructed via LL-branes at their “throats” are

not traversable w.r.t. the “laboratory” time of a static observer in either of the

different “universes” comprising the pertinent wormhole space–time manifold

since the LL-branes sitting at the “throats” look as black hole horizons to the

static observer. On the other hand, these wormholes are traversable w.r.t. the

proper time of a traveling observer.

Proper-time traversability can be easily seen by considering dynamics of test

particle of mass m0 (“traveling observer”) in a wormhole background, which is

described by the reparametrization-invariant worldline action:

Sparticle =
1

2

∫

dλ

[

1

e
ẋµẋνGµν − em2

0

]

. (56)

Using energy E and orbital momentum J conservation and introducing the proper

worldline time s
(

ds
dλ = em0

)

, the “mass-shell” constraint equation (the equation

w.r.t. the “einbein” e) produced by the action (56)) yields:

(

dη

ds

)2

+ Veff(η) =
E2

m2
0

, Veff(η) ≡ A(η)

(

1 +
J 2

m2
0C(η)

)

, (57)

where the metric coefficients A(η), C(η) are those in (39). Irrespectively of the

specific form of the “effective potential” in (57), a “radially” moving (with zero

“impact” parameter J = 0) traveling observer (and with sufficiently large energy

E) will always cross within finite amount of proper-time through any “throat”

(η = η
(k)
0 , where A(η

(k)
0 ) = 0) from one “universe” to another.

6. Charge-Hiding Wormholes

First we will construct “one-throat” wormhole solutions to (43) with the charged

LL-brane occupying the wormhole “throat,” which connects a noncompact

“universe” with Reissner–Nordström–(anti)-de Sitter-type geometry (6)–(8) (where

the cosmological constant is partially or entirely dynamically generated) to a com-

pactified (“tube-like”) “universe” of (generalized) Levi-Civita–Bertotti–Robinson-

type (11)–(12). These wormholes possess the novel property of hiding electric

charge from external observer in the noncompact “universe,” i.e. the whole elec-

tric flux produced by the charged LL-brane at the wormhole “throat” is pushed

into the “tube-like” “universe.” As a result, the noncompact “universe” becomes

electrically neutral with Schwarzschild–(anti-)de Sitter or purely Schwarzschild

geometry.

We find several types of such wormhole solutions. The first one exists when

the bare cosmological constant Λ > −2πf2, in particular, when Λ is absent from

the very beginning, the whole effective cosmological constant being dynamically

generated (9). This wormhole solution is constructed as follows:
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(A-1) “Left universe” of Levi-Civita–Bertotti–Robinson (“tube-like”) type with

geometry AdS2 × S2 (19) for η < 0:

A(η) = 4π

(

c2F −
√
2f |cF | −

Λ

4π

)

η2 ,

C(η) ≡ r20 =
1

4πc2F + Λ
= const ,

|Fvη| = |cF | >
f√
2

(

1 +

√

1 +
Λ

2πf2

)

= const ;

(58)

(A-2) Noncompact “right universe” for η > 0 comprising the exterior re-

gion of Reissner–Nordström–de Sitter-type black hole beyond the middle

(Schwarzschild-type) horizon r0 (cf. (6)–(9)):

A(η) ≡ ARNdS(r0 + η)

= 1−
√
8π|Q|f − 2m

r0 + η
+

Q2

(r0 + η)2

− Λ + 2πf2

3
(r0 + η)2 ,

C(η) = (r0 + η)2 ,

Fvη = F0r =
εF f√

2
+

Q√
4π (r0 + η)2

.

(59)

Here A(0) = ARNdS(r0) = 0 and ∂ηA(0) = ∂rARNdS(r0) > 0.

The next wormhole solution, which exists for large negative bare cosmological

constant Λ < 0, |Λ| > 2πf2, is built by:

(B-1) The same type of “left universe” of Levi-Civita–Bertotti–Robinson-type with

geometry AdS2 × S2 (19) for η < 0 as in (58):

A(η) = 4π

(

c2F −
√
2f |cF |+

|Λ|
4π

)

η2 ,

C(η) ≡ r20 =
1

4πc2F − |Λ| = const ,

|Fvη | = |cF | >
√

1

4π
|Λ| .

(60)

(B-2) Noncompact “right universe” for η > 0 comprising the exterior region

of Reissner–Nordström–anti-de Sitter-type black hole beyond the outer
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(Schwarzschild-type) horizon r0:

A(η) ≡ ARN–AdS(r0 + η)

= 1−
√
8π|Q|f − 2m

r0 + η
+

Q2

(r0 + η)2

+
|Λ| − 2πf2

3
(r0 + η)2 ,

C(η) = (r0 + η)2 ,

Fvη = F0r =
εF f√

2
+

Q√
4π (r0 + η)2

.

(61)

Here again A(0) = ARN–AdS(r0) = 0 and ∂ηA(0) = ∂rARN–AdS(r0) > 0.

For the special negative value of the bare cosmological constant Λ = −2πf2 we

find a third wormhole solution consisting of:

(C-1) The same type of “left universe” of Levi-Civita–Bertotti–Robinson-type with

geometry AdS2 × S2 (19) for η < 0 as in (58):

A(η) = 4π

(

|cF | −
f√
2

)2

η2 ,

C(η) ≡ r20 =
1

4π
(

c2F − 1
2f

2
) = const ,

|Fvη | = |cF | >
f√
2
.

(62)

(C-2) Noncompact “right universe” for η > 0 comprising the exterior region of

Reissner–Nordström-type black hole beyond the outer (Schwarzschild-type)

horizon r0:

A(η) ≡ ARN(r0 + η) = 1−
√
8π|Q|f − 2m

r0 + η
+

Q2

(r0 + η)2
,

C(η) = (r0 + η)2 , Fvη = F0r =
εF f√

2
+

Q√
4π (r0 + η)2

.

(63)

Here again A(0) = ARN(r0) = 0 and ∂ηA(0) = ∂rARN(r0) > 0.

Substituting (58)–(59), (60)–(61) and (62)–(63) in the set of matching relations

(53)–(55) determines all parameters of the wormhole solutions (r0,m,Q, b0, T ) in

terms of q (the LL-brane charge) and f (coupling constant of the “square-root”

Maxwell term in (43)):

Q = 0 , |cF | = |q|+ f√
2
,

sign(q) = − sign(Fvη) ≡ − sign(cF ) ,

(64)
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1

r20
= 4π

(

|q|+ f√
2

)2

+ Λ ,

m =
r0

2

[

1− 1

3
(Λ + 2πf2)r20

]

,

(65)

b0 =
1

4

(

q2 +
√
2f |q|

)

[(

|q|+ f√
2

)2

+
1

4π
Λ

]−1

,

T 2 =
1

16π

(

q2 +
√
2f |q|

)

,

(66)

and the bare cosmological constant must be in the interval:

− 4π

(

|q|+ f√
2

)2

< Λ < 4π

(

q2 − f2

2

)

, (67)

in particular, Λ could be zero.

The next wormhole solution has Rind2 ×S2 as compactified “left” universe

whenever Λ > −2πf2. It is built by:

(D-1) “Left universe” for η < 0 of Levi-Civita–Bertotti–Robinson (“tube-like”)

type with geometry Rind2 ×S2 (22):

A(η) = −η , C(η) ≡ r20 =
1

4πc2F + Λ
= const ,

|Fvη | = |cF | =
f√
2

(

1 +

√

1 +
Λ

2πf2

)

= const ;

(68)

(D-2) Noncompact “right universe” for η > 0 comprising the exterior re-

gion of Reissner–Nordström–de Sitter-type black hole beyond the middle

(Schwarzschild-type) horizon r0 as in (59).

Again substituting (68) and (59) into the set of matching relations (53)–

(55) determines all parameters of the wormhole solution (D-1)–(D-2) in complete

analogy with (64)–(66):

Q = 0 , |cF | = |q|+ f√
2
, sign(q) = − sign(Fvη) ≡ − sign(cF ) , (69)

Λ = 4π

(

q2 − f2

2

)

,
1

r20
= 8π

(

q2 +
f√
2
|q|
)

, m =
r0

2

[

1− 4πq2

3
r20

]

, (70)

b0 =
1

4

[

1 + r0 − 4πq2r20
]

, T 2 =
b0

2π

(

q2 +
f√
2
|q|
)

. (71)

The result Q = 0 in (64) and (69) has profound consequences. Namely, the

absence of Coulomb field in spite of the presence of the charged LL-brane source

leads us to the following important observations:
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(A) The “right-universe” in the wormhole solutions (A-1)–(A-2) (Eqs. (58)–(59))

and (D-1)–(D-2) (Eqs. (68), (59)) becomes exterior region of electrically neutral

Schwarzschild–de Sitter black hole beyond the internal (Schwarzschild-type)

horizon carrying a vacuum constant radial electric field |Fvη| = |F0r| = f√
2
.

(B) The “right-universe” in the wormhole solution (B-1)–(B-2) (Eqs. (60)–(61)) be-

comes exterior region of electrically neutral Schwarzschild–anti-de Sitter black

hole beyond the sole (Schwarzschild-type) horizon carrying a vacuum constant

radial electric field |Fvη| = |F0r| = f√
2
.

(C) The “right-universe” in the wormhole solution (C-1)–(C-2) (Eqs. (62)–(63))

becomes exterior region of the ordinary electrically neutral Schwarzschild black

hole beyond the horizon carrying a vacuum constant radial electric field |Fvη| =
|F0r | = f√

2
.

(D) According to (64) and (69) the whole flux of the electric field |F0η| with

|F0η| = |Fvη| = f√
2
+ |q| produced by the LL-brane charge q flows only into the

compactified “left universe” of Levi-Civita–Bertotti–Robinson-type (AdS2×S2

(19) or Rind2 ×S2 (22)). Due to the absence of electric flux in the noncompact

“right universe,” an outside observer there will therefore detect the charged

LL-brane as a neutral object.

A clearer explanation of above statements (A)–(D) can be given if we recall that

the electric flux is defined in terms of the electric displacement field D, which in the

present case is significantly different from the electric field E due to the presence

of the “square-root” Maxwell term in (43):

D =

(

1− f√
2|E|

)

E . (72)

Indeed, in the absence of magnetic field the 0th component of the nonlinear gauge

field equations (45) can be written in terms of D (72) as:

∂ ·
(
√
−GD

)

−
√
−GJ0 = 0 , (73)

where Jµ = 1√
−G

jµ is the charge vector current, so that:

∫

∂Σ

dS ·D = Qtotal =

∫

Σ

dV J0 . (74)

Here the factors
√
−G go into the definition of the corresponding volume forms

(integration measures) on the three-dimensional region Σ and its boundary ∂Σ.

Thus, Eq. (74) tells us that the electric flux from the charged LL-brane flowing

into the noncompact “right universes,” where the constant radial vacuum electric

field has magnitude |E| = f√
2
, is zero since D = 0 there according to (72). On

the other hand, inside the compactified Levi-Civita–Bertotti–Robinson-type “left

universe”:

D =
|q|

f√
2
+ |q|

E = −qη̂ , (75)
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Fig. 1. Shape of t = const and θ = π

2
slice of charge-“hiding” wormhole geometry. The whole

electric flux is expelled into the lower cylindric tube.

where η̂ denotes the unit vector along the “radial-like” η coordinate (here we have

used relations (64) and (69)). Therefore, the whole electric flux from the charged

LL-brane is expelled into the “tube-like” “left universe.”

The geometry of the charge-“hiding” wormholes is visualized in Fig. 1.
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7. Charge-Confining Wormhole

Apart from the above charge-hiding effect produced by “one-throat” wormhole

connecting a noncompact “universe” to a compactified “tube-like” “universe”

via LL-brane we find an even more interesting “two-throat” wormhole solution

exhibiting QCD-like charge confinement effect. Namely, let us now consider a self-

consistent coupling of the gravity/nonlinear-gauge-field system (2) with two sepa-

rate oppositely charged, but otherwise identical LL-branes described by the action

(43) and the resulting equations of motion (44)–(48) (here N = 2, T (1) = T (2) ≡ T ,

b
(1)
0 = b

(2)
0 ≡ b0, q

(1) ≡ q = −q(2)).

Using the general scheme outlined in Sec. 5 we construct a solution where the

total “two-throat” wormhole space–time manifold is built as follows:

(E-1) “Left-most” noncompact “universe” comprising the exterior region

of Reissner–Nordström–de Sitter-type black hole beyond the middle

Schwarzschild-type horizon r0 for the “radial-like” η-coordinate interval (see

also Eqs. (79) and (82) below):

−∞ < η < −η0 ≡ −
[

4π(
√
2f |cF | − c2F ) + Λ

]− 1
2 , (76)

where (cf. (6)–(9)):

A(η) = ARNdS(r0 − η0 − η)

= 1−
√
8π|Q|f − 2m

r0 − η0 − η
+

Q2

(r0 − η0 − η)2

− Λ + 2πf2

3
(r0 − η0 − η)2 , (77)

C(η) = (r0 − η0 − η)2 ,

Fvη(η) = F0r(η) =
εF f√

2
+

Q√
4π (r0 − η0 − η)2

.
(78)

Here A(−η0) = ARNdS(r0) = 0 and ∂ηA(−η0) = −∂rARNdS(r0) < 0.

(E-2) “Middle” compactified “tube-like” “universe” of Levi-Civita–Bertotti–

Robinson-type with geometry dS2×S2 (24)–(25) comprising the finite extent

(w.r.t. η-coordinate) region between the two horizons of dS2 at η = ±η0:

− η0 < η < η0 ≡
[

4π(
√
2f |cF | − c2F ) + Λ

]− 1
2 , (79)

where (cf. Eqs. (24)–(25)):

A(η) = 1−
[

4π(
√
2f |cF | − c2F ) + Λ

]

η2 , A(±η0) = 0 , (80)

C(η) = r20 =
1

4πc2F + Λ
, |Fvη | = |cF | <

f√
2

(

1 +

√

1 +
Λ

2πf2

)

, (81)

with Λ > −2πf2;
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(E-3) “Right-most” noncompact “universe” comprising the exterior region

of Reissner–Nordström–de Sitter-type black hole beyond the middle

Schwarzschild-type horizon r0 for the “radial-like” η-coordinate interval:

η0 < η < ∞ (η0 as in (79)) , (82)

i.e. a mirror image (−η → η) of the “left-most” “universe” (77)–(78):

A(η) = ARNdS(r0 + η − η0)

= 1−
√
8π|Q|f − 2m

r0 + η − η0
+

Q2

(r0 + η − η0)2

− Λ + 2πf2

3
(r0 + η − η0)

2 , (83)

C(η) = (r0 + η − η0)
2 ,

Fvη(η) = F0r(η) =
εF f√

2
+

Q√
4π(r0 + η − η0)2

.
(84)

Here A(η0) = ARNdS(r0) = 0 and ∂ηA(η0) = ∂rARNdS(r0) > 0.

According to the “horizon straddling” property (42) of worldvolume LL-brane

dynamics, each one of the two charged LL-branes (with equal worldvolume param-

eters (T, b0) but with opposite charges ±q, cf. (31)), automatically locates it-

self on one of the two common horizons between “left-most” (E-1) and middle

(E-2) “universes” at η = −η0 and between middle (E-2) and “right-most” (E-3)

“universes” at η = η0, respectively.

Now, as we did in the previous section, substituting (76)–(84) into the set of

matching relations (53)–(55) determines all parameters of the wormhole solutions

(r0, η0,m,Q, b0, T ) in terms of |q| (the magnitude of the LL-brane charges) and f

(the coupling constant of the “square-root” Maxwell term in (43)):

Q = 0 , |cF | = |q|+ f√
2
, sign(q) = − sign(Fvη) ≡ − sign(cF ) , (85)

1

r20
= 4π

(

|q|+ f√
2

)2

+ Λ , m =
r0

2

[

1− 1

3

(

Λ + 2πf2
)

r20

]

, (86)

η0 =
[

2π(f2 − 2q2) + Λ
]− 1

2 , (87)

b0 =
1

4

(

1−
(

Λ + 2πf2
)

r20 + 2r0
√

Λ + 2πf2 − 4πq2
)

,

T 2 =
b0

4π

[(

|q|+ f√
2

)2

+
1

4π
Λ

]

.

(88)

The bare cosmological constant must be in the interval:

Λ ≤ 0 , |Λ| < 2π(f2 − 2q2) → |q| < f√
2
, (89)

in particular, Λ could be zero.
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Again, as in the previous section, relations (85) are of primary importance. They

tell us that:

• The “left-most” (76)–(78) and “right-most” (82)–(84) noncompact “universes”

become two identical copies of the electrically neutral exterior region of

Schwarzschild–de Sitter black hole beyond the Schwarzschild horizon carrying a

constant vacuum radial electric field with magnitude |Fvη| = |F0r| = f√
2
pointing

inbound towards the horizon in one of these “universes” and pointing outbound

w.r.t. the horizon in the second “universe.” The corresponding electric displace-

ment field D = 0, so there is no electric flux there (cf. Eq. (72)–(74)).

• The whole electric flux produced by the two charged LL-branes with opposite

charges ±q at the boundaries of the above noncompact “universes” is confined

within the “tube-like” middle “universe” (79)–(81) where the constant electric

field is |Fvη | = f√
2
+ |q| with associated nonzero electric displacement field |D| =

|q| (cf. Eqs. (72)–(74)).

The geometry of the charge-confining wormhole is visualized in the Fig. 2.

8. Discussion and Conclusions

In this paper we have studied bulk gravity/nonlinear-gauge-field system self-

consistently coupled to one or two charged lightlike branes as matter sources. An

important feature of this system is the special form of the nonlinear gauge field

sector in (43) previously known to produce QCD-like confining dynamics in flat

space–time.3–7 The main objective here was to search for similar charge confin-

ing behavior in curved space–time, where the role of charged objects subject to

confinement is played by charged lightlike branes.

We found that charge-confining or charge-“hiding” effects take place within

wormhole solutions to the coupled gravity/nonlinear-gauge-field/lightlike-brane

system (43) with the following special structure:

(i) One of the “universes” comprising the total wormhole space–time manifold

must be a compactified “universe” of Levi-Civita–Bertotti–Robinson (“tube-

like”) type with geometry M2 × S2 where the two-dimensional manifold M2

possesses at least one horizon.

(ii) The one or two outer “universe(s)” are noncompact spherically symmetric

with at least one Schwarzschild-type horizon.

(iii) The matching (gluing together) of the compactified “universe” with the (one

of the two) outer noncompact “universe(s)” takes place at a common horizon

of both of them, which is automatically occupied by (one of the participating)

charged lightlike brane(s) (“horizon straddling” as dictated by worldvolume

lightlike brane dynamics).

(iv) Due to the presence of the “square-root” Maxwell term in (43) a nonzero

constant vacuum electric field is generated in (any of) the outer noncompact

“universe(s),” however, the total flux is zero there because of vanishing of
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Fig. 2. Shape of t = const and θ = π

2
slice of charge-confining wormhole geometry. The whole

electric flux is confined within the middle cylindric tube.

the pertinent electric displacement field, so that the charged lightlike brane

occupying the “throat” between the noncompact and the compactified “tube-

like” “universes” appears as electrically neutral to an external observer in the

noncompact “universe.”
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(v) In the compactified “tube-like” “universe” the charged lightlike brane(s) at

the its “border(s),” where it is matched to the noncompact “universe(s),”

produce a nonzero flux entirely confined within the “tube-like” “universe.”

(vi) When only one charged lightlike brane is present, the compactified “tube-like”

“universe” with geometries M2 × S2, where M2 = AdS2 or M2 = Rind2,

has an infinite extent w.r.t. “radial-like” η-coordinate of M2 and it absorbs

entirely the whole flux produced by the brane at the “border.” In this way it

hides the charge of the brane from an outside observer in the “neighboring”

noncompact “universe.”

(vii) When two oppositely charged but otherwise identical lightlike branes are

present, the middle “tube-like” “universe” stretching between them has geom-

etry dS2 × S2 and has final extent w.r.t. “radial-like” η-coordinate of the dS2

component. It absorbs entirely the whole flux produced between the branes

at its “borders,” i.e. the whole flux is confined within the finite-extent “tube-

like” region without flowing into any of the outside noncompact space–time

regions.

It is natural to expect that in a confining theory the gauge field prefers flux-

tube configurations, however, the mathematical details of how this happens might

be complicated in flat space–time. On the other hand, in the present curved space–

time model we obtain the following clear and simple picture:

(a) Due to the presence of lightlike brane(s) as material source(s) of gravity and

gauge forces, the very special lightlike brane worldvolume dynamics triggers one

or more transitions between noncompact and compactified “tube-like” space–

time regions in the form of special wormhole configurations with the lightlike

brane(s) sitting at the “throat(s).”

(b) Again the special lightlike brane worldvolume dynamics in combination with the

special properties of the additional “square-root”Maxwell term in the nonlinear

gauge field action cause the whole flux generated by the charged branes to be

entirely confined within the compactified “tube-like” region.

As a final remark, returning to the nonlinear gauge field equations (5) we see that

there exists a more general vacuum solution of the latter without the assumption of

staticity and spherical symmetry:

F 2 ≡ FκλFµνG
κµGλν = −f2 = const . (90)

The latter automatically produces via Eq. (4) an effective positive cosmological

constant:

T (F )
µν = −f2

4
Gµν , i.e. Λeff = 2πf2 . (91)

This reduces the gravity/gauge-field equations of motion (3), (5) to the vacuum

Einstein equations (with effective cosmological constant):

Rµν − 1

2
GµνR+ (Λ + 2πf2)Gµν = 0 (92)
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supplemented with the constraint Eq. (90). Thus, assuming absence of magnetic

field (Fmn = 0), i.e. F 2 = 2EmEnG
mnG00, Em ≡ F0m (m,n = 1, 2, 3), we obtain

the above described electrically neutral Schwarzschild–(anti)-de Sitter or purely

Schwarzschild solutions with a constant vacuum electric field (10), which according

to (90) has constant magnitude:

|E| ≡
√

−1

2
F 2 =

f√
2
, (93)

but it may point in arbitrary direction. In this vacuum with disordered constant-

magnitude electric field it will not be able to pass energy to a test charged particle,

which instead will undergo a kind of Brownian motion, therefore no Schwinger

pair-creation mechanism will take place.
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